Advertisements
Advertisements
प्रश्न
If tan A = cot B, prove that A + B = 90
उत्तर
∵ tan A = cot B
tan A = tan (90° – B)
A = 90° – B
A + B = 90°. Proved
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find sine of 47° 32'
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
Write the maximum and minimum values of cos θ.
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Find the value of the following:
sin 21° 21′
If tan θ = cot 37°, then the value of θ is
Sin 2B = 2 sin B is true when B is equal to ______.