Advertisements
Advertisements
प्रश्न
Use tables to find sine of 47° 32'
उत्तर
sin 47° 32' = sin (47° 30' + 2')
= 0.7373 + 0.0004
= 0.7377
APPEARS IN
संबंधित प्रश्न
Evaluate cosec 31° − sec 59°
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Solve.
sin42° sin48° - cos42° cos48°
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Prove that:
sec (70° – θ) = cosec (20° + θ)
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
If cot( 90 – A ) = 1, then ∠A = ?
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.