Advertisements
Advertisements
प्रश्न
Prove that:
sec (70° – θ) = cosec (20° + θ)
उत्तर
sec (70° – θ) = sec [90° – (20° + θ)] = cosec (20° + θ)
APPEARS IN
संबंधित प्रश्न
If the angle θ= –60º, find the value of cosθ.
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
The value of
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
If cot( 90 – A ) = 1, then ∠A = ?
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.