Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
उत्तर
We have to prove (cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
We know that `sin^2 A + cos^2 A = 1`
So
(cosec A - sin A)(sec A - cos A)(tan A + cot A)
`= (1/sin A - sin A)(1/cos A - cos A)(sin A/cos A + cos A/sin A)`
`= ((1 - sin^2 A)/sin A) ((1 - cos^2 A)/cos A) (sin^2 A + cos^2 A)/(sin A cos A)`
`= ((cos^2 A)/sin A) ((sin^2 A)/cos A) (1/(sin A cos A))`
`(= sin^2 A cos^2 A)/(sin^2 A cos^2 A)`
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate cosec 31° − sec 59°
What is the value of (cos2 67° – sin2 23°)?
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Use tables to find cosine of 8° 12’
Use trigonometrical tables to find tangent of 17° 27'
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
What is the maximum value of \[\frac{1}{\sec \theta}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If 8 tan x = 15, then sin x − cos x is equal to
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
If x and y are complementary angles, then ______.
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)