Advertisements
Advertisements
प्रश्न
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
उत्तर
`sinA/(secA - 1) + sinA/(secA + 1) = 2`
`=> (sinAsecA + sinA + secAsinA - sinA)/((secA - 1)(secA + 1)) = 2`
`=> (2sinAsecA)/(sec^2A - 1) = 2`
`=> (sinAsecA)/tan^2A = 1`
`=> cosA/sinA = 1`
`=>` cot A = 1
We know cot 45° = 1
Hence, A = 45°
APPEARS IN
संबंधित प्रश्न
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If A and B are complementary angles, then
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Solve: 2cos2θ + sin θ - 2 = 0.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.