Advertisements
Advertisements
प्रश्न
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
उत्तर
`(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
`=> (cos A + cos A sin A + cos A - sin A cos A)/((1 - sin A)(1 + sin A)) = 4`
`=> (2 cos A)/(1 - sin^2 A) = 4`
`=> (2 cos A)/(cos^2 A) = 4`
`=> 1/cos A = 2`
`=> cos A = 1/2`
We know `cos 60^circ = 1/2`
Hence, A = 60°
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is