Advertisements
Advertisements
प्रश्न
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
पर्याय
2
3
5
6
उत्तर
5
Explanation;
Hint:
3 sin 70° sec 20° + 2 sin 49° sec 51°
= `(3 sin 70°)/(cos (90 - 70°)) + (2 sin 49°)/(cos (90 - 49°))`
= `3 sin 70^circ/sin 70^circ + 2 sin 49^circ/sin 49^circ`
= 3 + 2
= 5
APPEARS IN
संबंधित प्रश्न
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Evaluate.
cos225° + cos265° - tan245°
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use trigonometrical tables to find tangent of 37°
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.