Advertisements
Advertisements
Question
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
Solution
`(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
`=> (cos A + cos A sin A + cos A - sin A cos A)/((1 - sin A)(1 + sin A)) = 4`
`=> (2 cos A)/(1 - sin^2 A) = 4`
`=> (2 cos A)/(cos^2 A) = 4`
`=> 1/cos A = 2`
`=> cos A = 1/2`
We know `cos 60^circ = 1/2`
Hence, A = 60°
APPEARS IN
RELATED QUESTIONS
Solve.
`tan47/cot43`
Evaluate.
cos225° + cos265° - tan245°
Use tables to find sine of 21°
Use tables to find cosine of 2° 4’
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is