English

Selina solutions for Mathematics [English] Class 10 ICSE chapter 21 - Trigonometrical Identities [Latest edition]

Advertisements

Chapters

Selina solutions for Mathematics [English] Class 10 ICSE chapter 21 - Trigonometrical Identities - Shaalaa.com
Advertisements

Solutions for Chapter 21: Trigonometrical Identities

Below listed, you can find solutions for Chapter 21 of CISCE Selina for Mathematics [English] Class 10 ICSE.


Exercise 21 (A)Exercise 21 (B)Exercise 21 (C)Exercise 21 (D)Exercise 21 (E)
Exercise 21 (A) [Pages 324 - 325]

Selina solutions for Mathematics [English] Class 10 ICSE 21 Trigonometrical Identities Exercise 21 (A) [Pages 324 - 325]

Exercise 21 (A) | Q 1 | Page 324

Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`

Exercise 21 (A) | Q 2 | Page 324

Prove the following identities:

`(1 + sin A)/(1 - sin A) = (cosec  A + 1)/(cosec  A - 1)`

Exercise 21 (A) | Q 3 | Page 324

Prove the following identities:

`1/(tan A + cot A) = cos A sin A`

Exercise 21 (A) | Q 4 | Page 324

Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`

Exercise 21 (A) | Q 5 | Page 324

Prove the following identities:

sin4A – cos4A = 2sin2A – 1

Exercise 21 (A) | Q 6 | Page 324

Prove the following identities:

(1 – tan A)2 + (1 + tan A)2 = 2 sec2A

Exercise 21 (A) | Q 7 | Page 324

Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A

Exercise 21 (A) | Q 8 | Page 324

Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1

Exercise 21 (A) | Q 9 | Page 324

Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1

Exercise 21 (A) | Q 10 | Page 324

Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A

Exercise 21 (A) | Q 11 | Page 324

Prove the following identities:

`((1 + tan^2A)cotA)/(cosec^2A) = tan A`

Exercise 21 (A) | Q 12 | Page 324

Prove the following identities:

tan2 A – sin2 A = tan2 A . sin2 A

Exercise 21 (A) | Q 13 | Page 324

Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A

Exercise 21 (A) | Q 14 | Page 324

Prove the following identities:

(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A

Exercise 21 (A) | Q 15 | Page 324

Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2

Exercise 21 (A) | Q 16 | Page 324

Prove the following identities:

(cos A + sin A)2 + (cos A – sin A)2 = 2

Exercise 21 (A) | Q 17 | Page 324

Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1

Exercise 21 (A) | Q 18 | Page 324

Prove the following identities:

`1/(secA + tanA) = secA - tanA`

Exercise 21 (A) | Q 19 | Page 324

Prove the following identities:

`cosecA + cotA = 1/(cosecA - cotA)`

Exercise 21 (A) | Q 20 | Page 324

Prove the following identities:

`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`

Exercise 21 (A) | Q 21 | Page 324

Prove the following identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A

Exercise 21 (A) | Q 22 | Page 324

Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2

Exercise 21 (A) | Q 23 | Page 324

Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`

Exercise 21 (A) | Q 24 | Page 324

Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`

Exercise 21 (A) | Q 25 | Page 324

Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`

Exercise 21 (A) | Q 26 | Page 324

Prove the following identities:

`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`

Exercise 21 (A) | Q 27 | Page 324

Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`

Exercise 21 (A) | Q 28 | Page 324

Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`

Exercise 21 (A) | Q 29 | Page 324

Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`

Exercise 21 (A) | Q 30 | Page 325

Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`

Exercise 21 (A) | Q 31 | Page 325

Prove the following identities:

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`

Exercise 21 (A) | Q 32 | Page 325

Prove the following identities:

`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`

Exercise 21 (A) | Q 33 | Page 325

Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`

Exercise 21 (A) | Q 34 | Page 325

Prove the following identities:

`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`

Exercise 21 (A) | Q 35 | Page 325

Prove the following identities:

`sinA/(1 + cosA) = cosec A - cot A`

Exercise 21 (A) | Q 36 | Page 325

Prove the following identities:

`cosA/(1 - sinA) = sec A + tan A`

Exercise 21 (A) | Q 37 | Page 325

Prove the following identities:

`(sinAtanA)/(1 - cosA) = 1 + secA`

Exercise 21 (A) | Q 38 | Page 325

Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2

Exercise 21 (A) | Q 39 | Page 325

Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`

Exercise 21 (A) | Q 40 | Page 325

Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`

Exercise 21 (A) | Q 41 | Page 325

Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`

Exercise 21 (A) | Q 42 | Page 325

Prove the following identities:

`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`

Exercise 21 (A) | Q 43 | Page 325

Prove the following identities:

`1 - cos^2A/(1 + sinA) = sinA`

Exercise 21 (A) | Q 44 | Page 325

Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`

Exercise 21 (A) | Q 45 | Page 325

Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`

Exercise 21 (A) | Q 46 | Page 325

Prove the following identities:

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`

Exercise 21 (A) | Q 47 | Page 325

Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`

Exercise 21 (A) | Q 48 | Page 325

Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`

Exercise 21 (B) [Page 327]

Selina solutions for Mathematics [English] Class 10 ICSE 21 Trigonometrical Identities Exercise 21 (B) [Page 327]

Exercise 21 (B) | Q 1.1 | Page 327

Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)

Exercise 21 (B) | Q 1.2 | Page 327

Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`

Exercise 21 (B) | Q 1.3 | Page 327

Prove that:

`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`

Exercise 21 (B) | Q 1.4 | Page 327

Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`

Exercise 21 (B) | Q 1.5 | Page 327

Prove that:

2 sin2 A + cos4 A = 1 + sin4

Exercise 21 (B) | Q 1.6 | Page 327

Prove that:

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`

Exercise 21 (B) | Q 1.7 | Page 327

Prove that:

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`

Exercise 21 (B) | Q 1.8 | Page 327

Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B

Exercise 21 (B) | Q 1.9 | Page 327

Prove that:

`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`

Exercise 21 (B) | Q 2 | Page 327

If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2

Exercise 21 (B) | Q 3 | Page 327

If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2

Exercise 21 (B) | Q 4 | Page 327

If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2

Exercise 21 (B) | Q 5 | Page 327

If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m

Exercise 21 (B) | Q 6 | Page 327

If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2

Exercise 21 (B) | Q 7 | Page 327

If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.

Exercise 21 (C) [Pages 328 - 329]

Selina solutions for Mathematics [English] Class 10 ICSE 21 Trigonometrical Identities Exercise 21 (C) [Pages 328 - 329]

Exercise 21 (C) | Q 1.1 | Page 328

Show that : tan 10° tan 15° tan 75° tan 80° = 1

Exercise 21 (C) | Q 1.2 | Page 328

Show that : sin 42° sec 48° + cos 42° cosec 48° = 2

Exercise 21 (C) | Q 1.3 | Page 328

Show that : `sin26^circ/sec64^circ  + cos26^circ/(cosec64^circ) = 1`

Exercise 21 (C) | Q 2.1 | Page 328

Express the following in terms of angle between 0° and 45°:

sin 59° + tan 63°

Exercise 21 (C) | Q 2.2 | Page 328

Express the following in terms of angles between 0° and 45°:

cosec68° + cot72°

Exercise 21 (C) | Q 2.3 | Page 328

Express the following in terms of angles between 0° and 45°:

cos74° + sec67°

Exercise 21 (C) | Q 3.1 | Page 328

Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`

Exercise 21 (C) | Q 3.2 | Page 328

Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`

Exercise 21 (C) | Q 4.1 | Page 328

For triangle ABC, show that : `sin  (A + B)/2 = cos  C/2`

Exercise 21 (C) | Q 4.2 | Page 328

For triangle ABC, show that : `tan  (B + C)/2 = cot  A/2`

Exercise 21 (C) | Q 5.1 | Page 328

Evaluate:

`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`

Exercise 21 (C) | Q 5.2 | Page 328

Evaluate:

3cos80° cosec10° + 2 sin59° sec31°

Exercise 21 (C) | Q 5.3 | Page 328

Evaluate:

`sin80^circ/(cos10^circ) + sin59^circ  sec31^circ`

Exercise 21 (C) | Q 5.4 | Page 328

Prove that:

tan (55° - A) - cot (35° + A)

Exercise 21 (C) | Q 5.5 | Page 328

Evaluate:

cosec (65° + A) – sec (25° – A)

Exercise 21 (C) | Q 5.6 | Page 328

Evaluate:

`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2)  cos45^circ`

Exercise 21 (C) | Q 5.7 | Page 328

Evaluate:

`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`

Exercise 21 (C) | Q 5.8 | Page 328

Evaluate:

`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`

Exercise 21 (C) | Q 5.9 | Page 328

Evaluate:

14 sin 30° + 6 cos 60° – 5 tan 45°

Exercise 21 (C) | Q 6 | Page 329

A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`

Exercise 21 (C) | Q 7.1 | Page 329

Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°

Exercise 21 (C) | Q 7.2 | Page 329

Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°

Exercise 21 (C) | Q 7.3 | Page 329

Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°

Exercise 21 (C) | Q 7.4 | Page 329

Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`

Exercise 21 (C) | Q 7.5 | Page 329

Find the value of x, if sin 2x = 2 sin 45° cos 45°

Exercise 21 (C) | Q 7.6 | Page 329

Find the value of x, if sin 3x = 2 sin 30° cos 30°

Exercise 21 (C) | Q 7.7 | Page 329

Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°

Exercise 21 (C) | Q 8.1 | Page 329

Find the value of angle A, where 0° ≤ A ≤ 90°.

sin (90° – 3A) . cosec 42° = 1

Exercise 21 (C) | Q 8.2 | Page 329

Find the value of angle A, where 0° ≤ A ≤ 90°.

cos (90° – A) . sec 77° = 1

Exercise 21 (C) | Q 9.1 | Page 329

Prove that:

`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`

Exercise 21 (C) | Q 9.2 | Page 329

Prove that:

`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`

Exercise 21 (C) | Q 10 | Page 329

Evaluate:

`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`

Exercise 21 (C) | Q 11 | Page 329

Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°

Exercise 21 (C) | Q 12 | Page 329

Without using trigonometrical tables, evaluate:

`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`

Exercise 21 (D) [Page 331]

Selina solutions for Mathematics [English] Class 10 ICSE 21 Trigonometrical Identities Exercise 21 (D) [Page 331]

Exercise 21 (D) | Q 1.1 | Page 331

Use tables to find sine of 21°

Exercise 21 (D) | Q 1.2 | Page 331

Use tables to find sine of 34° 42'

Exercise 21 (D) | Q 1.3 | Page 331

Use tables to find sine of 47° 32'

Exercise 21 (D) | Q 1.4 | Page 331

Use tables to find sine of 62° 57'

Exercise 21 (D) | Q 1.5 | Page 331

Use tables to find sine of 10° 20' + 20° 45'

Exercise 21 (D) | Q 2.1 | Page 331

Use tables to find cosine of 2° 4’

Exercise 21 (D) | Q 2.2 | Page 331

Use tables to find cosine of 8° 12’

Exercise 21 (D) | Q 2.3 | Page 331

Use tables to find cosine of 26° 32’

Exercise 21 (D) | Q 2.4 | Page 331

Use tables to find cosine of 65° 41’

Exercise 21 (D) | Q 2.5 | Page 331

Use tables to find cosine of 9° 23’ + 15° 54’

Exercise 21 (D) | Q 3.1 | Page 331

Use trigonometrical tables to find tangent of 37°

Exercise 21 (D) | Q 3.2 | Page 331

Use trigonometrical tables to find tangent of 42° 18'

Exercise 21 (D) | Q 3.3 | Page 331

Use trigonometrical tables to find tangent of 17° 27'

Exercise 21 (D) | Q 4.1 | Page 331

Use tables to find the acute angle θ, if the value of sin θ is 0.4848

Exercise 21 (D) | Q 4.2 | Page 331

Use tables to find the acute angle θ, if the value of sin θ is 0.3827

Exercise 21 (D) | Q 4.3 | Page 331

Use tables to find the acute angle θ, if the value of sin θ is 0.6525

Exercise 21 (D) | Q 5.1 | Page 331

Use tables to find the acute angle θ, if the value of cos θ is 0.9848

Exercise 21 (D) | Q 5.2 | Page 331

Use tables to find the acute angle θ, if the value of cos θ is 0.9574

Exercise 21 (D) | Q 5.3 | Page 331

Use tables to find the acute angle θ, if the value of cos θ is 0.6885

Exercise 21 (D) | Q 6.1 | Page 331

Use tables to find the acute angle θ, if the value of tan θ is 0.2419

Exercise 21 (D) | Q 6.2 | Page 331

Use tables to find the acute angle θ, if the value of tan θ is 0.4741

Exercise 21 (D) | Q 6.3 | Page 331

Use tables to find the acute angle θ, if the value of tan θ is 0.7391

Exercise 21 (E) [Pages 332 - 333]

Selina solutions for Mathematics [English] Class 10 ICSE 21 Trigonometrical Identities Exercise 21 (E) [Pages 332 - 333]

Exercise 21 (E) | Q 1.01 | Page 332

Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`

Exercise 21 (E) | Q 1.02 | Page 332

Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`

Exercise 21 (E) | Q 1.03 | Page 332

Prove the following identities:

`1 - sin^2A/(1 + cosA) = cosA`

Exercise 21 (E) | Q 1.04 | Page 332

Prove the following identities:

`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`

Exercise 21 (E) | Q 1.05 | Page 332

Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`

Exercise 21 (E) | Q 1.06 | Page 332

Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`

Exercise 21 (E) | Q 1.07 | Page 332

Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`

Exercise 21 (E) | Q 1.08 | Page 332

Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`

Exercise 21 (E) | Q 1.09 | Page 332

Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`

Exercise 21 (E) | Q 1.1 | Page 332

Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`

Exercise 21 (E) | Q 1.11 | Page 332

Prove the following identities:

`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`

Exercise 21 (E) | Q 1.12 | Page 332

Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`

Exercise 21 (E) | Q 1.13 | Page 332

Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`

Exercise 21 (E) | Q 1.14 | Page 332

Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`

Exercise 21 (E) | Q 1.15 | Page 332

Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1

Exercise 21 (E) | Q 1.16 | Page 332

Prove the following identities:

cosec4 A (1 – cos4 A) – 2 cot2 A = 1

Exercise 21 (E) | Q 1.17 | Page 332

Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2

Exercise 21 (E) | Q 2 | Page 332

If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.

Exercise 21 (E) | Q 3 | Page 332

If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 

Exercise 21 (E) | Q 4 | Page 332

If sec A + tan A = p, show that:

`sin A = (p^2 - 1)/(p^2 + 1)`

Exercise 21 (E) | Q 5 | Page 332

If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`

Exercise 21 (E) | Q 6.1 | Page 332

If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A

Exercise 21 (E) | Q 6.2 | Page 332

If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A

Exercise 21 (E) | Q 7.1 | Page 332

Evaluate:

`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`

Exercise 21 (E) | Q 7.2 | Page 332

Evaluate:

`sec26^@ sin64^@ + (cosec33^@)/sec57^@`

Exercise 21 (E) | Q 7.3 | Page 332

Evaluate:

`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)` 

Exercise 21 (E) | Q 7.4 | Page 332

Evaluate:

cos 40° cosec 50° + sin 50° sec 40°

Exercise 21 (E) | Q 7.5 | Page 332

Evaluate:

sin 27° sin 63° – cos 63° cos 27°

Exercise 21 (E) | Q 7.6 | Page 332

Evaluate:

`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`

Exercise 21 (E) | Q 7.7 | Page 332

Evaluate:

3 cos 80° cosec 10° + 2 cos 59° cosec 31°

Exercise 21 (E) | Q 7.8 | Page 332

Evaluate:

`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`

Exercise 21 (E) | Q 8.1 | Page 332

Prove that:

tan (55° + x) = cot (35° – x)

Exercise 21 (E) | Q 8.2 | Page 332

Prove that:

sec (70° – θ) = cosec (20° + θ)

Exercise 21 (E) | Q 8.3 | Page 332

Prove that:

sin (28° + A) = cos (62° – A)

Exercise 21 (E) | Q 8.4 | Page 332

Prove that:

`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`

Exercise 21 (E) | Q 8.5 | Page 332

Prove that:

`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`

Exercise 21 (E) | Q 9.1 | Page 332

If A and B are complementary angles, prove that:

cot B + cos B = sec A cos B (1 + sin B)

Exercise 21 (E) | Q 9.2 | Page 332

If A and B are complementary angles, prove that:

cot A cot B – sin A cos B – cos A sin B = 0

Exercise 21 (E) | Q 9.3 | Page 332

If A and B are complementary angles, prove that:

cosec2 A + cosec2 B = cosec2 A cosec2 B

Exercise 21 (E) | Q 9.4 | Page 332

If A and B are complementary angles, prove that:

`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`

Exercise 21 (E) | Q 10.01 | Page 333

Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`

Exercise 21 (E) | Q 10.02 | Page 333

Prove that:

`cot^2A/(cosecA - 1) - 1 = cosecA`

Exercise 21 (E) | Q 10.03 | Page 333

Prove that:

`cosA/(1 + sinA) = secA - tanA`

Exercise 21 (E) | Q 10.04 | Page 333

Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A

Exercise 21 (E) | Q 10.05 | Page 333

Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`

Exercise 21 (E) | Q 10.06 | Page 333

Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`

Exercise 21 (E) | Q 10.07 | Page 333

Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A

Exercise 21 (E) | Q 10.08 | Page 333

Prove that:

(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1

Exercise 21 (E) | Q 10.09 | Page 333

Prove that

`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`

Exercise 21 (E) | Q 10.1 | Page 333

Prove that:

`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)` 

Exercise 21 (E) | Q 11.1 | Page 333

If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A

Exercise 21 (E) | Q 11.2 | Page 333

If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A

Exercise 21 (E) | Q 12.1 | Page 333

Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0

Exercise 21 (E) | Q 12.2 | Page 333

Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0

Exercise 21 (E) | Q 12.3 | Page 333

Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0

Exercise 21 (E) | Q 12.4 | Page 333

Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0

Exercise 21 (E) | Q 12.5 | Page 333

Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0

Exercise 21 (E) | Q 13.1 | Page 333

If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 

Exercise 21 (E) | Q 13.2 | Page 333

If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`

Exercise 21 (E) | Q 14 | Page 333

Prove that:

(cosec A – sin A) (sec A – cos A) sec2 A = tan A

Exercise 21 (E) | Q 15 | Page 333

Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.

Exercise 21 (E) | Q 16 | Page 333

Evaluate without using trigonometric tables, 

`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`

Solutions for 21: Trigonometrical Identities

Exercise 21 (A)Exercise 21 (B)Exercise 21 (C)Exercise 21 (D)Exercise 21 (E)
Selina solutions for Mathematics [English] Class 10 ICSE chapter 21 - Trigonometrical Identities - Shaalaa.com

Selina solutions for Mathematics [English] Class 10 ICSE chapter 21 - Trigonometrical Identities

Shaalaa.com has the CISCE Mathematics Mathematics [English] Class 10 ICSE CISCE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. Selina solutions for Mathematics Mathematics [English] Class 10 ICSE CISCE 21 (Trigonometrical Identities) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. Selina textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics [English] Class 10 ICSE chapter 21 Trigonometrical Identities are Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Heights and Distances - Solving 2-D Problems Involving Angles of Elevation and Depression Using Trigonometric Tables, Trigonometry, Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Heights and Distances - Solving 2-D Problems Involving Angles of Elevation and Depression Using Trigonometric Tables, Trigonometry.

Using Selina Mathematics [English] Class 10 ICSE solutions Trigonometrical Identities exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in Selina Solutions are essential questions that can be asked in the final exam. Maximum CISCE Mathematics [English] Class 10 ICSE students prefer Selina Textbook Solutions to score more in exams.

Get the free view of Chapter 21, Trigonometrical Identities Mathematics [English] Class 10 ICSE additional questions for Mathematics Mathematics [English] Class 10 ICSE CISCE, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×