Advertisements
Advertisements
Question
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Solution
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
= `sin^2 28^@ + sin^2(90^@ - 28^@) + tan^2 38^@ - cot^2 (90^@ - 38^@) + 1/4 sec^2 30^@`
= `(sin^2 28^@ + cos^2 28^@) + tan^2 38^@ - tan^2 38^@ + 1/4 xx (2/sqrt3)^2`
= `1 + 0 + 1/4 xx 4/3`
= `1 + 1/3`
= `4/3`
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
(sin 65° + cos 25°)(sin 65° − cos 25°) = 0
Without using trigonometric tables, prove that:
sin35° sin55° − cos35° cos55° = 0
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
\[\frac{\sin\theta \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.
From the trigonometric table, write the values of tan 45°48'.
Prove that:
`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A