English

Prove That: Sin θ Cos ( 90 ∘ − θ ) Cos θ Sin ( 90 ∘ − θ ) + Cos θ Sin ( 90 ∘ − θ ) Sin θ Cos ( 90 ∘ − θ ) - Mathematics

Advertisements
Advertisements

Question

Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]

Sum

Solution

LHS \[\begin{array}{l} = \frac{\sin\theta\cos( {90}^\circ - \theta)\cos\theta}{\sin( {90}^\circ - \theta)} + \frac{\cos\theta\sin( {90}^\circ - \theta)\sin\theta}{\cos( {90}^\circ - \theta)} \\ \end{array}\]
\[\begin{array}{l}= \frac{\sin\theta\sin\theta\cos\theta}{\cos\theta} + \frac{\cos\theta\cos\theta\sin\theta}{\sin\theta} \\ \end{array}\]
\[\begin{array}{l}= \sin^2 \theta + \cos^2 \theta \\ \end{array}\]
= 1

= RHS

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 313]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 5.3 | Page 313

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Without using trigonometric tables, evaluate 

`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`


Without using trigonometric tables, prove that:

cosec272° − tan218° = 1


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Without using trigonometric tables, prove that:

cos257° − sin233° = 0


Without using trigonometric tables, prove that:

(sin 65° + cos 25°)(sin 65° − cos 25°) = 0


Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`


From trigonometric table, write the values of sin 37°19'.


From the trigonometric table, write the values of cos 23°17'.


Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'


`(sin 40° + cos 50°)/(tan 38°20')`


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×