Advertisements
Advertisements
Question
Prove that:
\[\frac{\sin\theta \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]
Solution
LHS \[\begin{array}{l} = \frac{\sin\theta\cos( {90}^\circ - \theta)\cos\theta}{\sin( {90}^\circ - \theta)} + \frac{\cos\theta\sin( {90}^\circ - \theta)\sin\theta}{\cos( {90}^\circ - \theta)} \\ \end{array}\]
\[\begin{array}{l}= \frac{\sin\theta\sin\theta\cos\theta}{\cos\theta} + \frac{\cos\theta\cos\theta\sin\theta}{\sin\theta} \\ \end{array}\]
\[\begin{array}{l}= \sin^2 \theta + \cos^2 \theta \\ \end{array}\]
= 1
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Without using trigonometric tables, prove that:
(sin 65° + cos 25°)(sin 65° − cos 25°) = 0
Without using trigonometric tables, prove that:
sin35° sin55° − cos35° cos55° = 0
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
Prove that:
cos1° cos2° cos3° ... cos180° = 0
If A, B and C are the angles of a ΔABC, prove that tan `((C + "A")/2) = cot B/2`
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
From trigonometric table, write the values of sin 37°19'.
From the trigonometric table, write the values of cos 23°17'.
Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'
`(sin 40° + cos 50°)/(tan 38°20')`
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`