English

Without Using Trigonometric Tables, Prove That: Cos257° − Sin233° = 0 - Mathematics

Advertisements
Advertisements

Question

Without using trigonometric tables, prove that:

cos257° − sin233° = 0

Sum

Solution

LHS = cos257° − sin233°

= cos2 (`90^circ - 33^circ`) - sin2 `33^circ`

= sin2 `33^circ` - sin2 `33^circ`

= 0

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 312]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 2.8 | Page 312

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`


Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, prove that:

cosec272° − tan218° = 1


Without using trigonometric tables, prove that:

cos275° + cos215° = 1


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Prove that:

`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2  cos 70^circ "cosec"  20^circ = 0`


Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`


Solve : Sin2θ - 3sin θ + 2 = 0 .


Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'


Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'


The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.


Given that sin θ = `a/b` then cos θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×