Advertisements
Advertisements
Question
Prove that:
`(2 "sin" 68^circ)/(cos 10^circ )- (2 cot 15^circ)/(5 tan 75^circ) = ((3 tan 45^circ t an 20^circ tan 40^circ tan 50^circ tan 70^circ)) /5= 1`
Solution
LHS = `(2 "sin" 68^circ)/(cos 10^circ )- (2 cot 15^circ)/(5 tan 75^circ) = ((3 tan 45^circ tan 20^circ tan 40^circ tan 50^circ tan 70^circ)) /5`
`=(2 sin 68^circ)/sin(90^circ - 22^circ) - (2 cot 15^circ)/(5 cot (90^circ - 75^circ)) - 3xx1xxcot(90^circ-20^circ)xxcot(90^circ-40^circ)xxtan 50^circxxtan 70^circ`
`= 2 - 2/5 = (3xx1/(tan 70^circ)xx1/(tan 50)^circxxtan 70^circ )/5`
`= 2 - 2/5 = 3/5`
`=( 10 - 2 - 3)/5`
`= 5/5`
= 1
= RHS
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
tan 71° − cot 19° = 0
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
(sin72° + cos18°)(sin72° − cos18°) = 0
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
From the trigonometric table, write the values of cos 23°17'.
Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'
`(sin 40° + cos 50°)/(tan 38°20')`
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`