English

Prove That: 2 Sin 68 ∘ Cos 10 ∘ − 2 Cot 15 ∘ 5 Tan 75 ∘ = ( 3 Tan 45 ∘ T a N 20 ∘ Tan 40 ∘ Tan 50 ∘ Tan 70 ∘ ) 5 = 1 - Mathematics

Advertisements
Advertisements

Question

Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 

Sum

Solution

LHS = `(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5  tan 75^circ) = ((3  tan 45^circ tan 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5`

`=(2 sin 68^circ)/sin(90^circ - 22^circ) - (2  cot 15^circ)/(5 cot (90^circ - 75^circ)) - 3xx1xxcot(90^circ-20^circ)xxcot(90^circ-40^circ)xxtan 50^circxxtan 70^circ`

`= 2 - 2/5 = (3xx1/(tan 70^circ)xx1/(tan 50)^circxxtan 70^circ )/5`

`= 2 - 2/5 = 3/5`

`=( 10 - 2 - 3)/5`

`= 5/5`

 = 1

= RHS 

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 313]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 4.3 | Page 313

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Without using trigonometric tables, evaluate 

`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :

`cot 38^circ/tan 52^circ`


Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0


Without using trigonometric tables, prove that:

tan 71° − cot 19° = 0


Without using trigonometric tables, prove that:

cosec272° − tan218° = 1


Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

From the trigonometric table, write the values of cos 23°17'.


Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'


`(sin 40° + cos 50°)/(tan 38°20')`


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×