हिंदी

Prove That: 2 Sin 68 ∘ Cos 10 ∘ − 2 Cot 15 ∘ 5 Tan 75 ∘ = ( 3 Tan 45 ∘ T a N 20 ∘ Tan 40 ∘ Tan 50 ∘ Tan 70 ∘ ) 5 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 

योग

उत्तर

LHS = `(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5  tan 75^circ) = ((3  tan 45^circ tan 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5`

`=(2 sin 68^circ)/sin(90^circ - 22^circ) - (2  cot 15^circ)/(5 cot (90^circ - 75^circ)) - 3xx1xxcot(90^circ-20^circ)xxcot(90^circ-40^circ)xxtan 50^circxxtan 70^circ`

`= 2 - 2/5 = (3xx1/(tan 70^circ)xx1/(tan 50)^circxxtan 70^circ )/5`

`= 2 - 2/5 = 3/5`

`=( 10 - 2 - 3)/5`

`= 5/5`

 = 1

= RHS 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 4.3 | पृष्ठ ३१३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude. 


Without using trigonometrical tables, evaluate:

`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`


Without using trigonometric tables, prove that:

cos257° − sin233° = 0


Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.


Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×