Advertisements
Advertisements
प्रश्न
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
उत्तर
\[\ LHS = \frac{\sec\left( 90° - \theta \right) cosec\theta - \tan\left( 90° - \theta \right) \cot\theta + \cos^2 25° + \cos^2 65°}{3\tan27° \tan63°}\]
\[ = \frac{cosec\theta cosec\theta - \cot\theta \cot\theta + \sin^2 \left( 90° - 25° \right) + \cos^2 65°}{3\tan27° \cot\left( 90° - 63° \right)}\]
\[ = \frac{{cosec}^2 \theta - \cot^2 \theta + \sin^2 65° + \cos^2 65°}{3\tan27°\cot27°}\]
\[ = \frac{1 + 1}{3 \times \tan27° \times \frac{1}{\tan27°}}\]
\[ = \frac{2}{3}\]
= RHS
APPEARS IN
संबंधित प्रश्न
In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Without using trigonometric tables, prove that:
sin35° sin55° − cos35° cos55° = 0
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
cos1° cos2° cos3° ... cos180° = 0
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.
Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
Given that sin θ = `a/b` then cos θ is equal to ______.
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.