Advertisements
Advertisements
प्रश्न
Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.
उत्तर
We have,
`(cos^2 θ - 3cos θ + 2)/(sin^2 θ) = 1`
⇒ cos2 θ - 3cos θ + 2 = sin2 θ
⇒ cos2 θ - 3cos θ + 2 - sin2 θ = 0
⇒ cos2 θ - 3cos θ + 1 + cos2 θ = 0
⇒ 2cos2 θ - 3cos θ + 1 = 0
⇒ 2cos2 θ - 2cos θ - cos θ + 1 = 0
⇒ 2cos θ( cos θ - 1) - 1( cos θ - 1) = 0
⇒ (cos θ - 1)(2cos θ - 1) = 0
⇒ cos θ - 1 = 0 or ⇒ 2cos θ - 1 = 0
⇒ cos θ = 1 or ⇒ cos θ = `1/2`
⇒ θ = 0° 0r ⇒ θ = 60°
Since, 0 < θ < 90°
So, θ = 60° is the solution of the equation.
APPEARS IN
संबंधित प्रश्न
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.