Advertisements
Advertisements
प्रश्न
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
उत्तर
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta)`
` = 1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+1/(cos^2theta)) + 1/(1+1/(sin^2theta)) ..........(∵ costheta = 1/sectheta "and" sintheta = 1/(cosectheta))`
`=1/(1+sin^2theta) + 1/(1+cos^2theta) + cos^2 theta/(1+cos^2theta) + sin^2theta/(1+sin^2theta)`
Taking L. C. M
`= ((1+ cos^2theta) + (1+ sin^2theta) + (1 +sin^2theta)(cos^2theta) + (sin^2theta) (1+ cos^2theta))/((1+sin^2theta) (1+cos^2theta))`
`= (1+ cos^2theta +1 + sin^2theta + cos^2theta + sin^2theta cos^2theta +sin^2theta + sin^2thetacos^2theta)/((1+sin^2theta) (1+cos^2theta)) ..(∵ sin^2theta + cos^2theta = 1)`
`= (4+2sin^2thetacos^2theta)/(1+ sin^2theta + cos^2theta + sin^2thetacos^2theta)`
` = (4+2 sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)`
Taking 2 as common factor
`= (2(2+ sin^2thetacos^2theta))/(2+sin^2thetacos^2theta) = 2.`
R. H. S
Hence, proved
APPEARS IN
संबंधित प्रश्न
Without using trigonometrical tables, evaluate:
`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
Prove that:
cos1° cos2° cos3° ... cos180° = 0
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
From the trigonometric table, write the values of tan 45°48'.
Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'
Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.