Advertisements
Advertisements
प्रश्न
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
उत्तर
LHS = tan266° − cot224°
= tan2 (`90^circ - 24^circ`) - cot2`24^circ`
= cot2 `24^circ` - cot2 `24^circ`
= 0
= RHS
APPEARS IN
संबंधित प्रश्न
In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude.
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`
Without using trigonometric tables, evaluate :
`("cosec" 42^circ)/sec 48^circ`
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
sin248° + sin242° = 1
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
Solve : Sin2θ - 3sin θ + 2 = 0 .
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
From trigonometric table, write the values of sin 37°19'.
From the trigonometric table, write the values of cos 23°17'.
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
Given that sin θ = `a/b` then cos θ is equal to ______.
Prove that:
`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A