Advertisements
Advertisements
प्रश्न
From trigonometric table, write the values of sin 37°19'.
उत्तर
From the tables of natural sine, we have
sin 37°18' = 0.6060
Mean difference for 1' = 0.0002 (to be added)
So, sin 37°19' = 0.6062.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.
Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'
`(sin 40° + cos 50°)/(tan 38°20')`
Given that sin θ = `a/b` then cos θ is equal to ______.