Advertisements
Advertisements
प्रश्न
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
उत्तर
5 tan θ = 4
tan θ = `4/5`
`sin θ/cos θ = 4/5`
`(5sin θ + 3cos θ)/(5sin θ + 2cos θ) = ((5sin θ)/(cos θ) + 3(cos θ)/(cos θ))/((5sin θ)/(cos θ) + (2cos θ)/(cos θ))` ....[Nr., and Dr. dividing by cos θ]
` = (5 xx 4/5 + 3)/(5 xx 4/5 + 2)`
` = (4 + 3)/(4 + 2) = 7/6`
APPEARS IN
संबंधित प्रश्न
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
cos1° cos2° cos3° ... cos180° = 0
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).