Advertisements
Advertisements
प्रश्न
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
उत्तर
5 tan θ = 4
tan θ = `4/5`
`sin θ/cos θ = 4/5`
`(5sin θ + 3cos θ)/(5sin θ + 2cos θ) = ((5sin θ)/(cos θ) + 3(cos θ)/(cos θ))/((5sin θ)/(cos θ) + (2cos θ)/(cos θ))` ....[Nr., and Dr. dividing by cos θ]
` = (5 xx 4/5 + 3)/(5 xx 4/5 + 2)`
` = (4 + 3)/(4 + 2) = 7/6`
APPEARS IN
संबंधित प्रश्न
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.
Solve : Sin2θ - 3sin θ + 2 = 0 .
Given that sin θ = `a/b` then cos θ is equal to ______.
Prove that:
`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A