Advertisements
Advertisements
प्रश्न
Prove that:
\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]
उत्तर
\[\begin{array}{l}(ii) LHS=\frac{\sin\theta}{\cos( {90}^0 - \theta)} + \frac{\cos\theta}{\sin( {90}^0 - \theta)} \\ \end{array}\]
\[\begin{array}{l}= \frac{\sin\theta}{\sin\theta} + \frac{\cos\theta}{\cos\theta} \\ \end{array}\]
\[\begin{array}{l}= 1 + 1 \\ \end{array}\]
\[\begin{array}{l}= 2 \\ \end{array}\]
\[\begin{array}{l}= \text{RHS} \\ \end{array}\]
\[\begin{array}{l}\text{Hence proved} . \\ \end{array}\]
APPEARS IN
संबंधित प्रश्न
In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude.
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, evaluate :
`tan 27^circ/cot 63^circ`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
(sin 65° + cos 25°)(sin 65° − cos 25°) = 0
Without using trigonometric tables, prove that:
sin35° sin55° − cos35° cos55° = 0
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
Solve : Sin2θ - 3sin θ + 2 = 0 .
From the trigonometric table, write the values of tan 45°48'.
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
Given that sin θ = `a/b` then cos θ is equal to ______.
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`