Advertisements
Advertisements
प्रश्न
Given that sin θ = `a/b` then cos θ is equal to ______.
पर्याय
`b/sqrt(b^2 - a^2)`
`b/a`
`sqrt(b^2 - a^2)/b`
`a/sqrt(b^2 - a^2)`
उत्तर
Given that sin θ = `"a"/"b"` then cos θ is equal to `underlinebb(sqrt(("b"^2 - "a"^2)/"b")`.
Explanation:
According to the question,
sin θ = `"a"/"b"`
We know, sin2 θ + cos2 θ = 1
sin2 A = 1 – cos2 A
sin A = `sqrt(1 - cos^2 "A")`
So, cos θ = `sqrt(1 - "a"^2/"b"^2)`
= `sqrt(("b"^2 - "a"^2)/"b"^2)`
= `sqrt(("b"^2 - "a"^2))/"b"`
Hence, cos θ = `sqrt(("b"^2 - "a"^2)/"b"`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
From the trigonometric table, write the values of cos 23°17'.
From the trigonometric table, write the values of tan 45°48'.
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
`(sin 40° + cos 50°)/(tan 38°20')`
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
The maximum value of `1/(cosec alpha)` is ______.
Prove that:
`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`