Advertisements
Advertisements
प्रश्न
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
उत्तर
LHS = cosec272° − tan218°
= cosec2 (`90^circ - 18^circ`) - tan2 `18^circ`
= `sec^2 18^circ` - tan2 `18^circ`
= 1
= RHS
APPEARS IN
संबंधित प्रश्न
In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude.
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Without using trigonometric tables, evaluate :
`("cosec" 42^circ)/sec 48^circ`
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Without using trigonometric tables, prove that:
sin35° sin55° − cos35° cos55° = 0
Prove that:
`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec" 31^circ = 2`
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
Solve : Sin2θ - 3sin θ + 2 = 0 .
Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.
Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'
Given that sin θ = `a/b` then cos θ is equal to ______.
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.