मराठी

A Man in a Boat Rowing Away from a Lighthouse 100 M High Takes 2 Minutes to Change the Angle of Elevation of the Top of the Lighthouse from 60° to 30°. Find the Speed of the Boat in Metres per Minute - Mathematics

Advertisements
Advertisements

प्रश्न

A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]

बेरीज

उत्तर

AB is a lighthouse of height 100m. Let the speed of boat be x metres per minute. And CD is the distance which man travelled to change the angle of elevation.

Therefore,
CD = 2x [Distance = speed x time]

tan(60°) = `("AB")/("BC")`

`sqrt3 = 100/"BC"`

`=> "BC" = 100/sqrt3`

tan(30°) = `"AB"/"BD"`

`=> 1/sqrt3 = 100/"BD"`

BD = 100`sqrt3`

CD = BD - BC

`2"x" = 100 sqrt3 - 100/sqrt3`

`2"x" = (300 - 100)/sqrt3`

`=> "x" = 200/(2sqrt3)`

`=> x = 100/sqrt3`

Using, 

`sqrt3 = 1.73`

`"x" = 100/1.73 = 57.80`

Hence, the speed of the boat is 57.80 metres per minute.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 30/1/1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate without using trigonometric tables, 

`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`


Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, evaluate :

`cot 38^circ/tan 52^circ`


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.


From the trigonometric table, write the values of cos 23°17'.


From the trigonometric table, write the values of tan 45°48'.


Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.


Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.


The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.


Given that sin θ = `a/b` then cos θ is equal to ______.


The maximum value of `1/(cosec alpha)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×