मराठी

If Sec 4 a = Cosec (A − 15°), Where 4 a is an Acute Angle, Find the Value of A. - Mathematics

Advertisements
Advertisements

प्रश्न

If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.

बेरीज

उत्तर

\[\begin{array}{l}\sec4A = \ cosec(A -{15}^\circ ) \\ \end{array}\] 

\[\begin{array}{l}=> cosec( {90}^\circ - 4A) = \ cosec(A- {15}^\circ )[ \because \sec\theta = \ cosec ( {90}^\circ -\theta)] \\ \end{array}\] 

\[\begin{array}{l}{=>90}^\circ - 4A = A - {15}^\circ \\ \end{array}\] 

\[\begin{array}{l}{=>105}^\circ = 5A \\  \\ \end{array}\] 

\[=>A = \frac{{105}^\circ}{5} =  {21}^\circ\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१४]

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 14 | पृष्ठ ३१४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Without using trigonometrical tables, evaluate:

`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, evaluate :

`cot 38^circ/tan 52^circ`


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0


Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


Prove that:

\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`


Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'


`(sin 40° + cos 50°)/(tan 38°20')`


The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×