Advertisements
Advertisements
Question
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
Solution
\[\begin{array}{l}\sec4A = \ cosec(A -{15}^\circ ) \\ \end{array}\]
\[\begin{array}{l}=> cosec( {90}^\circ - 4A) = \ cosec(A- {15}^\circ )[ \because \sec\theta = \ cosec ( {90}^\circ -\theta)] \\ \end{array}\]
\[\begin{array}{l}{=>90}^\circ - 4A = A - {15}^\circ \\ \end{array}\]
\[\begin{array}{l}{=>105}^\circ = 5A \\ \\ \end{array}\]
\[=>A = \frac{{105}^\circ}{5} = {21}^\circ\]
APPEARS IN
RELATED QUESTIONS
Without using trigonometrical tables, evaluate:
`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`
Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`
Without using trigonometric tables, evaluate :
`("cosec" 42^circ)/sec 48^circ`
Prove that:
`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec" 31^circ = 2`
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[\frac{\sin\theta \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
If A, B and C are the angles of a ΔABC, prove that tan `((C + "A")/2) = cot B/2`
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
Solve : Sin2θ - 3sin θ + 2 = 0 .
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'
Given that sin θ = `a/b` then cos θ is equal to ______.
The maximum value of `1/(cosec alpha)` is ______.