English

If Sec 4 a = Cosec (A − 15°), Where 4 a is an Acute Angle, Find the Value of A. - Mathematics

Advertisements
Advertisements

Question

If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.

Sum

Solution

\[\begin{array}{l}\sec4A = \ cosec(A -{15}^\circ ) \\ \end{array}\] 

\[\begin{array}{l}=> cosec( {90}^\circ - 4A) = \ cosec(A- {15}^\circ )[ \because \sec\theta = \ cosec ( {90}^\circ -\theta)] \\ \end{array}\] 

\[\begin{array}{l}{=>90}^\circ - 4A = A - {15}^\circ \\ \end{array}\] 

\[\begin{array}{l}{=>105}^\circ = 5A \\  \\ \end{array}\] 

\[=>A = \frac{{105}^\circ}{5} =  {21}^\circ\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 314]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 14 | Page 314

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Without using trigonometrical tables, evaluate:

`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`


Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`


Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`


Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.


Solve : Sin2θ - 3sin θ + 2 = 0 .


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'


Given that sin θ = `a/b` then cos θ is equal to ______.


The maximum value of `1/(cosec alpha)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×