English

2 3 C O S E C 2 58 ∘ − 2 3 Cot 58 ∘ Tan 32 ∘ − 5 3 Tan 13 ∘ Tan 37 ∘ Tan 45 ∘ Tan 53 ∘ Tan 77 ∘ = − 1 - Mathematics

Advertisements
Advertisements

Question

\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]
Sum

Solution

\[\begin{array}{l}\frac{2}{3}\cos {ec}^2 {58}^0 - \frac{2}{3}\cot {58}^0 \tan {32}^0 - \frac{5}{3}\tan {13}^0 \tan {37}^0 \tan {45}^0 \tan {53}^0 \tan {77}^0 \\ \end{array}\]

\[\begin{array}{l}=\frac{2}{3}(\cos {ec}^2 {58}^0 - \cot {58}^0 \tan {32}^0 ) - \frac{5}{3}\tan {13}^0 \tan( {90}^0 - {13}^0 )\tan {37}^0 \tan( {90}^0 - {37}^0 )(\tan {45}^0 ) \\ \end{array}\]

\[\begin{array}{l}=\frac{2}{3}{\cos {ec}^2 {58}^0 - \cot {58}^0 \tan( {90}^0 - {58}^0 )}- \frac{5}{3}\tan {13}^0 \cot {13}^0 \tan {37}^0 \cot {37}^0 (1) \\ \end{array}\]

\[\begin{array}{l}=\frac{2}{3}(\cos {ec}^2 {58}^0 - \cot {58}^0 \cot {58}^0 ) - \frac{5}{3}\tan {13}^0 \frac{1}{\tan {13}^0}\tan {37}^0 \frac{1}{\tan {37}^0} \\ \end{array}\]

\[\begin{array}{l}=\frac{2}{3}(\cos {ec}^2 {58}^0 - \cot^2 {58}^0 ) - \frac{5}{3} \\ \end{array}\]
\[\begin{array}{l}=\frac{2}{3} - \frac{5}{3} \\ \end{array}\]

= -1

Hence Proved

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 314]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 15 | Page 314

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude. 


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, prove that:

tan 71° − cot 19° = 0


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Without using trigonometric tables, prove that:

cos257° − sin233° = 0


Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0


Prove that:

`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2  cos 70^circ "cosec"  20^circ = 0`


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`


Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.


From the trigonometric table, write the values of cos 23°17'.


Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.


`(sin 40° + cos 50°)/(tan 38°20')`


Given that sin θ = `a/b` then cos θ is equal to ______.


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×