Advertisements
Advertisements
प्रश्न
उत्तर
\[\begin{array}{l}\frac{2}{3}\cos {ec}^2 {58}^0 - \frac{2}{3}\cot {58}^0 \tan {32}^0 - \frac{5}{3}\tan {13}^0 \tan {37}^0 \tan {45}^0 \tan {53}^0 \tan {77}^0 \\ \end{array}\]
\[\begin{array}{l}=\frac{2}{3}(\cos {ec}^2 {58}^0 - \cot {58}^0 \tan {32}^0 ) - \frac{5}{3}\tan {13}^0 \tan( {90}^0 - {13}^0 )\tan {37}^0 \tan( {90}^0 - {37}^0 )(\tan {45}^0 ) \\ \end{array}\]
\[\begin{array}{l}=\frac{2}{3}{\cos {ec}^2 {58}^0 - \cot {58}^0 \tan( {90}^0 - {58}^0 )}- \frac{5}{3}\tan {13}^0 \cot {13}^0 \tan {37}^0 \cot {37}^0 (1) \\ \end{array}\]
\[\begin{array}{l}=\frac{2}{3}(\cos {ec}^2 {58}^0 - \cot {58}^0 \cot {58}^0 ) - \frac{5}{3}\tan {13}^0 \frac{1}{\tan {13}^0}\tan {37}^0 \frac{1}{\tan {37}^0} \\ \end{array}\]
\[\begin{array}{l}=\frac{2}{3}(\cos {ec}^2 {58}^0 - \cot^2 {58}^0 ) - \frac{5}{3} \\ \end{array}\]
\[\begin{array}{l}=\frac{2}{3} - \frac{5}{3} \\ \end{array}\]
= -1
Hence Proved
APPEARS IN
संबंधित प्रश्न
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Prove that:
\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]
Prove that:
\[\frac{\sin\theta \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
Solve : Sin2θ - 3sin θ + 2 = 0 .
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
From the trigonometric table, write the values of tan 45°48'.
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
`(sin 40° + cos 50°)/(tan 38°20')`
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.
The maximum value of `1/(cosec alpha)` is ______.