हिंदी

Without Using Trigonometric Tables, Prove That: Cos275° + Cos215° = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Without using trigonometric tables, prove that:

cos275° + cos215° = 1

योग

उत्तर

LHS = cos275° + cos215°

= cos2(`90^circ - 15^circ) + cos^2 15^circ`

 = `sin^2 15^circ + cos^2 15^circ`

= 1 

= RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१२]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 2.5 | पृष्ठ ३१२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Without using trigonometric tables, evaluate 

`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, prove that:

tan 71° − cot 19° = 0


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Without using trigonometric tables, prove that:

sin248° + sin242° = 1


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Without using trigonometric tables, prove that:

sin35° sin55° − cos35° cos55° = 0


Prove that:

`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2  cos 70^circ "cosec"  20^circ = 0`


Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.


\[\frac{2}{3} {cosec}^2 58^\circ- \frac{2}{3}\cot58^\circ \tan32^\circ - \frac{5}{3}\tan13^\circ \tan37^\circ\tan45^\circ\tan53^\circ\tan77^\circ = - 1\]

Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`


Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.


From the trigonometric table, write the values of cos 23°17'.


Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.


`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×