हिंदी

Without Using Trigonometric Tables, Prove That: Cosec272° − Tan218° = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Without using trigonometric tables, prove that:

cosec272° − tan218° = 1

योग

उत्तर

LHS = cosec272° − tan218°

= cosec2 (`90^circ - 18^circ`) - tan2 `18^circ`

= `sec^2 18^circ` - tan2 `18^circ`

= 1

= RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१२]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 2.4 | पृष्ठ ३१२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0


Prove that:

`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2  cos 70^circ "cosec"  20^circ = 0`


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


Prove that:

\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]


Prove that:

cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


Solve : Sin2θ - 3sin θ + 2 = 0 .


From trigonometric table, write the values of sin 37°19'.


Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×