हिंदी

Without Using Trigonometric Tables, Prove That: - Mathematics

Advertisements
Advertisements

प्रश्न

Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0

योग

उत्तर

LHS=(sin72°+cos18°)(sin72°cos18°)

=(sin72°+cos18°)[cos(90°72°)cos18°]

=(sin72°+cos18°)(cos18°cos18°)

=(sin72°+cos18°)(0)

=0

=RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 3.5 | पृष्ठ ३१३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate without using trigonometric tables, 

`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`


Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°


Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`


Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`


Without using trigonometric tables, prove that:

tan 71° − cot 19° = 0


Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.


Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


Solve : Sin2θ - 3sin θ + 2 = 0 .


From trigonometric table, write the values of sin 37°19'.


Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.


Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'


The maximum value of `1/(cosec alpha)` is ______.


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×