हिंदी

Without Using Trigonometric Tables, Prove That: Tan 71° − Cot 19° = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Without using trigonometric tables, prove that:

tan 71° − cot 19° = 0

योग

उत्तर

LHS = tan 71° − cot 19° 

= `tan (90^circ - 19^circ) - cot 19^circ`

= `cot 19^circ - cot 19^circ`

= 0 
= RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१२]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 2.2 | पृष्ठ ३१२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate without using trigonometric tables, 

`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`


Without using trigonometric tables, prove that:

cosec272° − tan218° = 1


Without using trigonometric tables, prove that:

cos275° + cos215° = 1


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:

cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`


Solve : Sin2θ - 3sin θ + 2 = 0 .


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


From the trigonometric table, write the values of cos 23°17'.


From the trigonometric table, write the values of tan 45°48'.


Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.


The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.


Given that sin θ = `a/b` then cos θ is equal to ______.


The maximum value of `1/(cosec alpha)` is ______.


Prove that:

`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×