Advertisements
Advertisements
प्रश्न
Prove that:
`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A
उत्तर
LHS = `(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")`
`= (cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - (cos "A")/(sin "A"))`
`= (cos^2 "A")/(cos "A" - sin "A") + (sin "A")/((sin "A" - cos "A")/(sin "A"))`
`= (cos^2 "A")/(cos "A" - sin "A") + (sin^2 "A")/ (sin "A" - cos "A")`
`= (cos^2 "A")/(cos "A" - sin "A") - (sin^2 "A")/(cos "A" - sin "A")`
`= (cos^2 "A" - sin^2 "A")/(cos "A" - sin "A")`
`= ((cos "A" + sin "A")(cos "A" - sin "A"))/((cos "A" - sin "A"))`
= sin A + cos A ...(RHS)
APPEARS IN
संबंधित प्रश्न
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Without using trigonometric tables, evaluate :
`tan 27^circ/cot 63^circ`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Prove that:
`(2 "sin" 68^circ)/(cos 10^circ )- (2 cot 15^circ)/(5 tan 75^circ) = ((3 tan 45^circ t an 20^circ tan 40^circ tan 50^circ tan 70^circ)) /5= 1`
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.
`(sin 40° + cos 50°)/(tan 38°20')`