Advertisements
Advertisements
Question
Prove that:
`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A
Solution
LHS = `(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")`
`= (cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - (cos "A")/(sin "A"))`
`= (cos^2 "A")/(cos "A" - sin "A") + (sin "A")/((sin "A" - cos "A")/(sin "A"))`
`= (cos^2 "A")/(cos "A" - sin "A") + (sin^2 "A")/ (sin "A" - cos "A")`
`= (cos^2 "A")/(cos "A" - sin "A") - (sin^2 "A")/(cos "A" - sin "A")`
`= (cos^2 "A" - sin^2 "A")/(cos "A" - sin "A")`
`= ((cos "A" + sin "A")(cos "A" - sin "A"))/((cos "A" - sin "A"))`
= sin A + cos A ...(RHS)
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
Without using trigonometric tables, prove that:
sin35° sin55° − cos35° cos55° = 0
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
If A, B and C are the angles of a ΔABC, prove that tan `((C + "A")/2) = cot B/2`
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
Solve : Sin2θ - 3sin θ + 2 = 0 .