English

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: (sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A - Mathematics

Advertisements
Advertisements

Question

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A

Sum

Solution

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A

L.H.S = (sin A + cosec A)2 + (cos A + sec A)2

= sin2A + cosec2A + 2sinA cosecA + cos2A + sec2A + 2cosA secA

= (sin2A + cos2A) + (cosec2A + sec2A) + 2sinA`(1/sinA)`+ 2cosA`(1/cosA)`

= (1) + (1 + cot2A + 1 + tan2A) + (2) + (2)

= 7 + tan2A + cot2A

= R.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.4 [Page 194]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.4 | Q 5.08 | Page 194

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude. 


Evaluate without using trigonometric tables, 

`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`


Without using trigonometrical tables, evaluate:

`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`


Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0


Without using trigonometric tables, prove that:

cosec 80° − sec 10° = 0


Without using trigonometric tables, prove that:

cos275° + cos215° = 1


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


Prove that:

`(2  "sin"  68^circ)/(cos 10^circ )- (2  cot 15^circ)/(5 tan 75^circ) = ((3  tan 45^circ t  an 20^circ  tan 40^circ tan 50^circ tan 70^circ)) /5= 1` 


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]


Prove that:

cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If A, B  and C are the angles of a  ΔABC, prove that tan `((C + "A")/2) = cot  B/2`


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


Prove the following:

`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`


Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.


Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.


Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.


Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'


Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'


`(sin 40° + cos 50°)/(tan 38°20')`


`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`


Given that sin θ = `a/b` then cos θ is equal to ______.


The maximum value of `1/(cosec alpha)` is ______.


Prove that:

`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×