Advertisements
Advertisements
Question
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
Solution
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
= `(0.3557 + 2.4340)/(0.8450 - 2.616)`
= `(2.7897)/(0.5834)`
= `(27897)/(5834)`
= 4.7818.
APPEARS IN
RELATED QUESTIONS
Without using trigonometrical tables, evaluate:
`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Prove that:
\[\frac{\sin\theta \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.
Prove that:
`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`