English

Prove That: Cos ( 90 ∘ − θ ) 1 + Sin ( 90 ∘ − θ ) + 1 + Sin ( 90 ∘ − θ ) Cos ( 90 ∘ − θ ) = 2 C O S E C θ - Mathematics

Advertisements
Advertisements

Question

Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]

Sum

Solution

\[\begin{array}{l}(v) LHS = \frac{\cos( {90}^0 -  \theta)}{1 + \sin( {90}^0 - \theta)} + \frac{1 + \sin( {90}^0 - \theta)}{\cos( {90}^0 - \theta)} \\ \end{array}\]

\[\begin{array}{l}= \frac{\sin\theta}{1 + \cos\theta} + \frac{1 + \cos\theta}{\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{\sin^2 \theta + {(1 + \cos\theta)}^2}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{\sin^2 \theta + 1 + \cos^2 \theta + 2\cos\theta}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{1 + 1 + 2\cos\theta}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{2 + 2\cos\theta}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{2(1 + \cos\theta)}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= 2\frac{1}{\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= 2 \ cosec\theta \\ \end{array}\]
\[\begin{array}{l}= RHS \\ \end{array}\]

= Hence proved

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Trigonometric Ratios of Complementary Angles - Exercises [Page 313]

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 5.5 | Page 313

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude. 


Without using trigonometric tables, evaluate 

`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`


Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Prove that:

`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2  cos 70^circ "cosec"  20^circ = 0`


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


From the trigonometric table, write the values of tan 45°48'.


Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.


Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'


Given that sin θ = `a/b` then cos θ is equal to ______.


Prove that:

`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`


If sin θ = 1, then the value of `1/2  sin(theta/2)`is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×