Advertisements
Advertisements
Question
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
Solution
\[\begin{array}{l}(v) LHS = \frac{\cos( {90}^0 - \theta)}{1 + \sin( {90}^0 - \theta)} + \frac{1 + \sin( {90}^0 - \theta)}{\cos( {90}^0 - \theta)} \\ \end{array}\]
\[\begin{array}{l}= \frac{\sin\theta}{1 + \cos\theta} + \frac{1 + \cos\theta}{\sin\theta} \\ \end{array}\]
\[\begin{array}{l}= \frac{\sin^2 \theta + {(1 + \cos\theta)}^2}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]
\[\begin{array}{l}= \frac{\sin^2 \theta + 1 + \cos^2 \theta + 2\cos\theta}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]
\[\begin{array}{l}= \frac{1 + 1 + 2\cos\theta}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]
\[\begin{array}{l}= \frac{2 + 2\cos\theta}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]
\[\begin{array}{l}= \frac{2(1 + \cos\theta)}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]
\[\begin{array}{l}= 2\frac{1}{\sin\theta} \\ \end{array}\]
\[\begin{array}{l}= 2 \ cosec\theta \\ \end{array}\]
\[\begin{array}{l}= RHS \\ \end{array}\]
= Hence proved
APPEARS IN
RELATED QUESTIONS
In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude.
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec" 31^circ = 2`
Prove that:
cos1° cos2° cos3° ... cos180° = 0
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
From the trigonometric table, write the values of tan 45°48'.
Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
Given that sin θ = `a/b` then cos θ is equal to ______.
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.