Advertisements
Advertisements
Question
From the trigonometric table, write the values of tan 45°48'.
Solution
Similarly, tan 45°48' = 1.0283.
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
sin248° + sin242° = 1
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
If A, B and C are the angles of a ΔABC, prove that tan `((C + "A")/2) = cot B/2`
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`