English

Solve the Following Equation: (Cos θ)/(1 - Sin θ) + Cos θ/(1 + Sinθ) = 4 - Mathematics

Advertisements
Advertisements

Question

Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.

Sum

Solution

We have,
∴ `(cos θ)/(1 - sin θ) + (cos θ)/(1 + sin θ) = 4`

`⇒ cos θ{(1)/(1 - sin θ) + (1)/(1 + sin θ)} = 4`

`⇒ cos θ{(1 + sin θ + 1 - sin θ)/((1 - sin θ)(1 + sin θ))} = 4`

⇒ 2cos θ = 4( 1 - sinθ )( 1 + sin θ)

⇒ 2cos θ = 4( 1 - sin2θ )

⇒ 2 cos θ = 4cos2θ
⇒ 4cos2θ - 2cos θ = 0
⇒ 2cos θ( 2cos θ - 1) = 0
⇒ 2cos θ = 0 or  ⇒ 2cos θ - 1 = 0
⇒ cos θ = 0 or    ⇒ cos θ = `1/2`
⇒ θ = 60°,  (since 0 < θ < 90° ).

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 1

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 1 | Q 11.1

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×