Advertisements
Advertisements
Question
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
Solution
We have,
∴ `(cos θ)/(1 - sin θ) + (cos θ)/(1 + sin θ) = 4`
`⇒ cos θ{(1)/(1 - sin θ) + (1)/(1 + sin θ)} = 4`
`⇒ cos θ{(1 + sin θ + 1 - sin θ)/((1 - sin θ)(1 + sin θ))} = 4`
⇒ 2cos θ = 4( 1 - sinθ )( 1 + sin θ)
⇒ 2cos θ = 4( 1 - sin2θ )
⇒ 2 cos θ = 4cos2θ
⇒ 4cos2θ - 2cos θ = 0
⇒ 2cos θ( 2cos θ - 1) = 0
⇒ 2cos θ = 0 or ⇒ 2cos θ - 1 = 0
⇒ cos θ = 0 or ⇒ cos θ = `1/2`
⇒ θ = 60°, (since 0 < θ < 90° ).
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, prove that:
tan 71° − cot 19° = 0
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[\frac{\sin\theta \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]
Prove that:
cos1° cos2° cos3° ... cos180° = 0
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
From the trigonometric table, write the values of tan 45°48'.
Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.
The maximum value of `1/(cosec alpha)` is ______.