Advertisements
Advertisements
प्रश्न
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
उत्तर
We have,
∴ `(cos θ)/(1 - sin θ) + (cos θ)/(1 + sin θ) = 4`
`⇒ cos θ{(1)/(1 - sin θ) + (1)/(1 + sin θ)} = 4`
`⇒ cos θ{(1 + sin θ + 1 - sin θ)/((1 - sin θ)(1 + sin θ))} = 4`
⇒ 2cos θ = 4( 1 - sinθ )( 1 + sin θ)
⇒ 2cos θ = 4( 1 - sin2θ )
⇒ 2 cos θ = 4cos2θ
⇒ 4cos2θ - 2cos θ = 0
⇒ 2cos θ( 2cos θ - 1) = 0
⇒ 2cos θ = 0 or ⇒ 2cos θ - 1 = 0
⇒ cos θ = 0 or ⇒ cos θ = `1/2`
⇒ θ = 60°, (since 0 < θ < 90° ).
APPEARS IN
संबंधित प्रश्न
In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, evaluate :
`("cosec" 42^circ)/sec 48^circ`
Prove that:
\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]
Prove that:
\[\frac{\sin\theta \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]
If A, B and C are the angles of a ΔABC, prove that tan `((C + "A")/2) = cot B/2`
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
From the trigonometric table, write the values of cos 23°17'.
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.
The maximum value of `1/(cosec alpha)` is ______.