Advertisements
Advertisements
प्रश्न
Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.
उत्तर
We have,
`(cos^2 θ - 3cos θ + 2)/(sin^2 θ) = 1`
⇒ cos2 θ - 3cos θ + 2 = sin2 θ
⇒ cos2 θ - 3cos θ + 2 - sin2 θ = 0
⇒ cos2 θ - 3cos θ + 1 + cos2 θ = 0
⇒ 2cos2 θ - 3cos θ + 1 = 0
⇒ 2cos2 θ - 2cos θ - cos θ + 1 = 0
⇒ 2cos θ( cos θ - 1) - 1( cos θ - 1) = 0
⇒ (cos θ - 1)(2cos θ - 1) = 0
⇒ cos θ - 1 = 0 or ⇒ 2cos θ - 1 = 0
⇒ cos θ = 1 or ⇒ cos θ = `1/2`
⇒ θ = 0° 0r ⇒ θ = 60°
Since, 0 < θ < 90°
So, θ = 60° is the solution of the equation.
APPEARS IN
संबंधित प्रश्न
In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude.
Without using trigonometric tables, evaluate :
`tan 27^circ/cot 63^circ`
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
Prove that:
`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A