Advertisements
Advertisements
प्रश्न
Without using trigonometric tables, evaluate :
`("cosec" 42^circ)/sec 48^circ`
उत्तर
`("cosec" 42^circ)/sec 48^circ`
= `("cosec" (90^circ - 48^circ))/sec 48^circ`
= `sec 48^circ/sec 48^circ` [`because` sec (90-θ) = cosec θ]
= 1
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Without using trigonometric tables, evaluate :
`tan 27^circ/cot 63^circ`
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
If A, B and C are the angles of a ΔABC, prove that tan `((C + "A")/2) = cot B/2`
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
From the trigonometric table, write the values of cos 23°17'.
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
Using trigonometric table evaluate the following:
tan 25°45' + cot 45°25'.
Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.
Prove that:
`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.