Advertisements
Advertisements
प्रश्न
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
उत्तर
`sin^2 34^@ + sin^2 56^@ + 2 tan 18^@ tan 72^@ - cot^2 30^@`:
`= sin^2 34^2 + sin^2 (90^@ - 34^@) + 2 tan 18^@ tan (90^@ - 18^@) - cot^2 30^@`
`= sin^2 34^@ + cos^2 34^@ + 2tan 18^@ cot 18^@ - cot^2 30^@`
`= (sin^2 34^@ + cos^2 34^@) + 2 tan 18^@ xx 1/(tan 18^@) - cot^2 30^@`
`= 1 + 2 xx 1 - (sqrt3)^2`
= 1 + 2 - 3
= 3 - 3
= 0
APPEARS IN
संबंधित प्रश्न
Without using trigonometrical tables, evaluate:
`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Without using trigonometric tables, prove that:
sin248° + sin242° = 1
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
cos1° cos2° cos3° ... cos180° = 0
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.