मराठी

Prove That: Cos ( 90 ∘ − θ ) 1 + Sin ( 90 ∘ − θ ) + 1 + Sin ( 90 ∘ − θ ) Cos ( 90 ∘ − θ ) = 2 C O S E C θ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]

बेरीज

उत्तर

\[\begin{array}{l}(v) LHS = \frac{\cos( {90}^0 -  \theta)}{1 + \sin( {90}^0 - \theta)} + \frac{1 + \sin( {90}^0 - \theta)}{\cos( {90}^0 - \theta)} \\ \end{array}\]

\[\begin{array}{l}= \frac{\sin\theta}{1 + \cos\theta} + \frac{1 + \cos\theta}{\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{\sin^2 \theta + {(1 + \cos\theta)}^2}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{\sin^2 \theta + 1 + \cos^2 \theta + 2\cos\theta}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{1 + 1 + 2\cos\theta}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{2 + 2\cos\theta}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= \frac{2(1 + \cos\theta)}{(1 + \cos\theta)\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= 2\frac{1}{\sin\theta} \\ \end{array}\]

\[\begin{array}{l}= 2 \ cosec\theta \\ \end{array}\]
\[\begin{array}{l}= RHS \\ \end{array}\]

= Hence proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१३]

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 5.5 | पृष्ठ ३१३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`


Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`


Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Without using trigonometric tables, prove that:

sin248° + sin242° = 1


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1


Prove that:

`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec"  31^circ = 2`


Prove that:

\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.


Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.


Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


From the trigonometric table, write the values of tan 45°48'.


Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.


Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'


The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.


Prove that:

`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×