Advertisements
Advertisements
प्रश्न
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.
पर्याय
`1/(2sqrt(2))`
`1/sqrt(2)`
`1/2`
0
उत्तर
If sin θ = 1, then the value of `1/2 sin(theta/2)`is `bbunderline(1/(2sqrt(2)))`.
Explanation:
`sin(theta/2)=+-sqrt((1-costheta)/2)`
`=+-sqrt((1-0)/2)=+-1/sqrt(2)`
Since we are interested in the positive square root (as the principal value for θ = `pi/2` will result in a positive sine value for `theta/2`, we have
`sin(theta/2)=1/sqrt(2)`
Therefore, the value of `1/2 sin (theta/2)`is
`=1/2xx1/sqrt(2)=1/(2sqrt(2))`
APPEARS IN
संबंधित प्रश्न
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Without using trigonometric tables, evaluate :
`tan 27^circ/cot 63^circ`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
tan 71° − cot 19° = 0
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.
Given that sin θ = `a/b` then cos θ is equal to ______.