मराठी

If sin θ = 1, then the value of 12 sin(θ2)is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin θ = 1, then the value of `1/2  sin(theta/2)`is ______.

पर्याय

  • `1/(2sqrt(2))`

  • `1/sqrt(2)`

  • `1/2`

  • 0

MCQ
रिकाम्या जागा भरा

उत्तर

If sin θ = 1, then the value of `1/2  sin(theta/2)`is `bbunderline(1/(2sqrt(2)))`.

Explanation:

`sin(theta/2)=+-sqrt((1-costheta)/2)`

`=+-sqrt((1-0)/2)=+-1/sqrt(2)`

Since we are interested in the positive square root (as the principal value for θ = `pi/2` will result in a positive sine value for `theta/2`, we have

`sin(theta/2)=1/sqrt(2)`

Therefore, the value of `1/2  sin (theta/2)`is 

`=1/2xx1/sqrt(2)=1/(2sqrt(2))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Standard Official

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate without using trigonometric tables, 

`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0


Without using trigonometric tables, prove that:

tan 71° − cot 19° = 0


Without using trigonometric tables, prove that:

cosec 80° − sec 10° = 0


Prove that:

`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2  cos 70^circ "cosec"  20^circ = 0`


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.


Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.


Given that sin θ = `a/b` then cos θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×