Advertisements
Advertisements
प्रश्न
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.
विकल्प
`1/(2sqrt(2))`
`1/sqrt(2)`
`1/2`
0
उत्तर
If sin θ = 1, then the value of `1/2 sin(theta/2)`is `bbunderline(1/(2sqrt(2)))`.
Explanation:
`sin(theta/2)=+-sqrt((1-costheta)/2)`
`=+-sqrt((1-0)/2)=+-1/sqrt(2)`
Since we are interested in the positive square root (as the principal value for θ = `pi/2` will result in a positive sine value for `theta/2`, we have
`sin(theta/2)=1/sqrt(2)`
Therefore, the value of `1/2 sin (theta/2)`is
`=1/2xx1/sqrt(2)=1/(2sqrt(2))`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, evaluate :
`("cosec" 42^circ)/sec 48^circ`
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
From the trigonometric table, write the values of tan 45°48'.
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.
The maximum value of `1/(cosec alpha)` is ______.
Prove that:
`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A