हिंदी

If sin θ = 1, then the value of 12 sin(θ2)is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin θ = 1, then the value of `1/2  sin(theta/2)`is ______.

विकल्प

  • `1/(2sqrt(2))`

  • `1/sqrt(2)`

  • `1/2`

  • 0

MCQ
रिक्त स्थान भरें

उत्तर

If sin θ = 1, then the value of `1/2  sin(theta/2)`is `bbunderline(1/(2sqrt(2)))`.

Explanation:

`sin(theta/2)=+-sqrt((1-costheta)/2)`

`=+-sqrt((1-0)/2)=+-1/sqrt(2)`

Since we are interested in the positive square root (as the principal value for θ = `pi/2` will result in a positive sine value for `theta/2`, we have

`sin(theta/2)=1/sqrt(2)`

Therefore, the value of `1/2  sin (theta/2)`is 

`=1/2xx1/sqrt(2)=1/(2sqrt(2))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (February) Standard Official

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Without using trigonometric tables, evaluate 

`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`


Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Without using trigonometric tables, prove that:

cos257° − sin233° = 0


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


From the trigonometric table, write the values of tan 45°48'.


Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.


Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.


`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`


The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.


The maximum value of `1/(cosec alpha)` is ______.


Prove that:

`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×