Advertisements
Advertisements
प्रश्न
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
उत्तर
`"LHS" = sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
`=(sin 18^circ)/sin(90^circ -72^circ) + sqrt(3) [cot(90^circ - 10^circ)xx1/sqrt(3)xxcot(90^circ - 40^circ )xxtan50^circ]`
`=(sin 18^circ)/(sin 18^circ) + sqrt(3) (cot 80^circxxcot 50^circ)xxtan 50^circxxtan 80^circ)/)`
`= 1 + (1/tan 80^circxx1/ tan 50^circxxtan 50^circxxtan 80^circ)`
= 2
= RHS
APPEARS IN
संबंधित प्रश्न
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Without using trigonometric tables, evaluate :
`tan 27^circ/cot 63^circ`
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Prove that:
\[\frac{\sin\theta \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
From trigonometric table, write the values of sin 37°19'.
Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'
`(sin 40° + cos 50°)/(tan 38°20')`
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
Given that sin θ = `a/b` then cos θ is equal to ______.