Advertisements
Advertisements
प्रश्न
Prove that:
\[\frac{\sin\theta \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]
उत्तर
LHS \[\begin{array}{l} = \frac{\sin\theta\cos( {90}^\circ - \theta)\cos\theta}{\sin( {90}^\circ - \theta)} + \frac{\cos\theta\sin( {90}^\circ - \theta)\sin\theta}{\cos( {90}^\circ - \theta)} \\ \end{array}\]
\[\begin{array}{l}= \frac{\sin\theta\sin\theta\cos\theta}{\cos\theta} + \frac{\cos\theta\cos\theta\sin\theta}{\sin\theta} \\ \end{array}\]
\[\begin{array}{l}= \sin^2 \theta + \cos^2 \theta \\ \end{array}\]
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
From trigonometric table, write the values of sin 37°19'.
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.
Given that sin θ = `a/b` then cos θ is equal to ______.
The maximum value of `1/(cosec alpha)` is ______.
Prove that:
`(sin^3 theta + cos^3 theta)/(sin theta + cos theta) = 1 - sin theta cos theta`
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.