हिंदी

If Sec 4 a = Cosec (A − 15°), Where 4 a is an Acute Angle, Find the Value of A. - Mathematics

Advertisements
Advertisements

प्रश्न

If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.

योग

उत्तर

\[\begin{array}{l}\sec4A = \ cosec(A -{15}^\circ ) \\ \end{array}\] 

\[\begin{array}{l}=> cosec( {90}^\circ - 4A) = \ cosec(A- {15}^\circ )[ \because \sec\theta = \ cosec ( {90}^\circ -\theta)] \\ \end{array}\] 

\[\begin{array}{l}{=>90}^\circ - 4A = A - {15}^\circ \\ \end{array}\] 

\[\begin{array}{l}{=>105}^\circ = 5A \\  \\ \end{array}\] 

\[=>A = \frac{{105}^\circ}{5} =  {21}^\circ\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Trigonometric Ratios of Complementary Angles - Exercises [पृष्ठ ३१४]

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 7 Trigonometric Ratios of Complementary Angles
Exercises | Q 14 | पृष्ठ ३१४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude. 


Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)` 

[Hint: Simplify LHS and RHS separately.] 


Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0


Without using trigonometric tables, prove that:

tan 71° − cot 19° = 0


Without using trigonometric tables, prove that:

tan266° − cot224° = 0


Without using trigonometric tables, prove that:

(sin72° + cos18°)(sin72° − cos18°) = 0


Prove that:

`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2  cos 70^circ "cosec"  20^circ = 0`


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.  


Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`


Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


From trigonometric table, write the values of sin 37°19'.


Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.


Given that sin θ = `a/b` then cos θ is equal to ______.


The maximum value of `1/(cosec alpha)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×