Advertisements
Advertisements
प्रश्न
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
उत्तर
\[\begin{array}{l}\sec4A = \ cosec(A -{15}^\circ ) \\ \end{array}\]
\[\begin{array}{l}=> cosec( {90}^\circ - 4A) = \ cosec(A- {15}^\circ )[ \because \sec\theta = \ cosec ( {90}^\circ -\theta)] \\ \end{array}\]
\[\begin{array}{l}{=>90}^\circ - 4A = A - {15}^\circ \\ \end{array}\]
\[\begin{array}{l}{=>105}^\circ = 5A \\ \\ \end{array}\]
\[=>A = \frac{{105}^\circ}{5} = {21}^\circ\]
APPEARS IN
संबंधित प्रश्न
In the below given figure, a tower AB is 20 m high and BC, its shadow on the ground, is 20√3 m long. Find the sun’s altitude.
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(cosec A - sin A) (sec A - cos A) = `1/(tanA+cotA)`
[Hint: Simplify LHS and RHS separately.]
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
tan 71° − cot 19° = 0
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Without using trigonometric tables, prove that:
(sin72° + cos18°)(sin72° − cos18°) = 0
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
cos1° cos2° cos3° ... cos180° = 0
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
From trigonometric table, write the values of sin 37°19'.
Solve the following equation: `(cos θ)/(1 - sin θ) + cos θ/(1 + sinθ) = 4`.
Given that sin θ = `a/b` then cos θ is equal to ______.
The maximum value of `1/(cosec alpha)` is ______.